ответ:8
Объяснение: введём обозначения: пусть большая наклонная c₁=17, её проекция а₁; меньшая наклонная с₂=10, её проекция а₂ ; расстояние от точки до плоскости обозначим b. 1)Тогда по условию а₁ - а₂ =9 , значит а₁=9 + а₂ 2)По теореме Пифагора из большего прямоугольного треугольника b²= 17²- (9+a₂)²=208-18a₂ -a₂² Из меньшего прямоугольного треугольника b²= 100-а₂². Левые части этих равенств равны, значит и правые равны 208-18a₂ -a₂² = 100 - а₂² 18a₂=108 а₂=6. Найдём b²= 100-а₂²=100-36=64 b=8
78,5 см²
Объяснение:
Боковая поверхность цилиндра. если развернуть ее в плоскость то это прямоугольник, с высотой h=8 см и площадью S=251,2 см.кв. Нижняя сторона прямоугольника a - до того как развернули на плоскость - это длина окружности основания и она равна
a=251,2/8= 31,4 см.
Длина окружности основания a=πd= 31,4 см, то диаметр основания цилиндра d будет равен d=31,4/π=31,4/3,14=10 см, а радиус r равен половине диаметра d:
r=d/2=10/2=5 см
Зная радиус r основания находим его площадь:
Sосн= πr²=3,14 * 5²=3,14*25=78,5 см²