Пусть АВСД- трапеция. Известно, что высота ВД=12см. Проведем равную ей высоту СК(высоты равны, т.к. треугольники АВН и СКД равны по Двум сторонам и углу между ними). АД(искомое основание)= АН+НК+КД. НК=ВС=60см. АН в квадрате = АВ в квадрате-ВН в квадрате( по т. Пифагора). АН= АВ/2( угол, лежащий против угла в 30 градусов равен половине гипотенузы). АВ в квадрате/4 =АВ в квадрате - 144АВ в квадрате равен 4АВ в квадрате - 5763АВ в квадрате равен 576Ав в квадрате равен 192Следовательно, АВ равен 8 корней из трех- это гипотенуза, а нужный нам катет АН равен 4 корня из трех. Следовательно, АД равно 60 + 2*4 корня из трех. Равно 60+ 8 корней из 3
Дано уравнение параболы 5x^2-7x-2y-4=0
Выделяем полные квадраты:
5(x²-2·(7/10)x + (7/10)²) -5·(7/10)² = 5(x-(7/10))²- (49/20)
Преобразуем исходное уравнение:
Получили уравнение параболы:
(x - x0)² = 2p(y - y0) .
(x-(7/10))² = 2·(1/5)(y - (-129/40)) .
Ветви параболы направлены вверх (p>0), вершина расположена в точке (x0, y0), то есть в точке ((7/10); (-129/40)) .
Параметр p = 1/5.
Координаты фокуса: (xo; yo+(p/2)) = (7/10); (-125/40)).
Уравнение директрисы: y = y0 - p/2
y = (-129/40) - (1/10) = (-133/40 ).
Параметры кривой более подробно даны во вложении.