1 проведем диагональ AC, она пересечется с диагональю BD в точке F.
2 свойства ромба: диагонали точкой пересечения делятся пополам, диагонали ромба равны, перпендикулярны, в ромбе все стороны равны и противолежащие углы равны.
Зн. треугольник FBC-прямоугольный, угол B=120:2=60 градусов, угол O=90 градусов, угол C=180-90-60=30 градусов(свойство треугольника: сумма всех его углов равна 180 градусов)
4 по свойству катетов: катет лежащий напротив угла 30 градусов, равен половине гипотинузы, Зн. сторона BC равна OB умножить на 2 (OB=4 см, т.к. 8:2=4см)
Сторона BC=8см.
5 В ромбе все стороны равны, зн. 8 умножить на 4 будет 32 см
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Дано:
ABCD-ромб,
угол C=120 градусов,
BD-диагональ=8 см
1 проведем диагональ AC, она пересечется с диагональю BD в точке F.
2 свойства ромба: диагонали точкой пересечения делятся пополам, диагонали ромба равны, перпендикулярны, в ромбе все стороны равны и противолежащие углы равны.
Зн. треугольник FBC-прямоугольный, угол B=120:2=60 градусов, угол O=90 градусов, угол C=180-90-60=30 градусов(свойство треугольника: сумма всех его углов равна 180 градусов)
4 по свойству катетов: катет лежащий напротив угла 30 градусов, равен половине гипотинузы, Зн. сторона BC равна OB умножить на 2 (OB=4 см, т.к. 8:2=4см)
Сторона BC=8см.
5 В ромбе все стороны равны, зн. 8 умножить на 4 будет 32 см
ответ: Pромба=32см