Длина окр: 2пr = 8п 2r=8п:п 2r =8 r=4-рдиус вписан. окр. S впис. окр = пr2 S=3,14*4*4= 50,24 - плозадь впис окр. Плозадь окр, опис. вокруг правильного треуг. в 4 раза больше S опис. окр. =50,24*4=200,96 S кольца = S опис. окр.- S впис. окр. S кольца= 200,96- 50,24= 150,72 В треуг ABCD проведем медеаны,AD,BK,CM. S треуг. ABCD 1/2 AC*BK, 1/2 AC=KC Медиана треуг. впис окр. делится в отношении 2:1 Поэтому высота BK=R+r=8+4=12 S=12*KC Найдем KC - сторону треуг. KOC, KC-касат.,OC=R=8-гипотинуза, другой катет ОK=r=4 KC2=OC2+OK2 KC-корень из 8*8-4*4= корень из 48= 6,92 Sтреуг. ABC=12*6,92=83,04 Прости,но без рисунка.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
37-13=24 м.
2) Находим отрезок АD.Тут нужно вспомнить теорему Пифагора
c^2= a^2 + b^2
AD^2=32^2+24^2
AD^2=1024+576
AD^2=1600
AD=40
ответ: 40м. расстояние между вершинами двух сосен