Дві площини паралельні між собою. Із точки М, що знаходиться між площинами, проведено дві прямі, які перетинають ці площини відповідно в точках А 1 і А 2 , В 1 і В 2 . Відомо, що МА 1 =3 см, В 1 В 2 =12 см, А 1 А 2 =МВ 1 . Знайдіть МА 2 і МВ 2 .
Если начертим перпендикуляры из середины гипотенузы к катетам, то получим прямоугольник со сторонами 3 и 4. Одна из его диагоналей (диагональ = 5), проведенная к середине гипотенузы равна половине гипотенузы (по свойству радиуса описанной окружности прямоугольного треугольника). Получаем, гипотенуза = 10, и ее половина = 5.Так как имеем перпендикуляры, то получаем два маленьких треугольника с катетами 3,4. Учитывая изначально получившийся прямоугольник, катеты большого треугольника равны 6 и 8. Площадь треугольника = 6*8/2 = 24
Раскладіваю "по полочкам" 1) если середина удалена от катетов, то эти отрезки соответственно перпендикулярны катетам, значит , соответственно параллельны другим катетам. 2) если эти отрезки соответственно параллельны катетам (сторонам), да и еще проходят через середину гипотенузы( третьей стороны) , то они являются средними линиями. 3) если они являются средними линиями, то соответствующие им стороны в 2 раза больше, т.е. катеты будут равны 8 и 6 см 4) находим площадь прямоугольного треугольника S=8*6/2=24
Все. Даже не рисую рисунок. Задача простейшая, можно было все решить в одной строчке, но решил поэпистолярничать. :)