ответ:Сумма углов,прилежащих к одной боковой стороне трапеции равна 180 градусов
Если угол D равен 60 градусов,то угол С равен
<С=180-60=120 градусов
Диагональ АС отсекла от трапеции равнобедренный треугольник(АВ=ВС) ,а углы при основании АС равны между собой
<ВАС=<ВСА=120-90=30 градусов
<В=180-30•2=120 градусов,тогда
<А=180-120=60 градусов
Вывод-трапеция равнобедренная,т к углы при каждом основании равны между собой
Номер 2
Углы при боковых сторонах трапеции в сумме равны 180 градусов
Трапеция прямоугольная
<S=<M=180-90=90 градусов
Диагональ отсекла от трапеции равнобедренный треугольник,углы при основании которого равны между собой
<RMK=<К=(180-50):2=65 градусов
<R=180-65=115 градусов
Объяснение:
Рассмотрим ∆CBD и ∆ABD.
Угол CBD=180°–угол ABD=180°–90°=90° (смежные углы), следовательно ∆CBD – прямоугольный с прямым углом CBD, ∆ABD – прямоугольный с прямым углом ABD
CD=AD по условию;
BD – общая сторона;
Следовательно ∆CBD=∆ABD как прямоугольные треугольники с равными гипотенузой и катетом.
Тогда угол ADB=угол CDB=55° как соответственные углы равных треугольников.
Так как углы ADF, ADB u CBD – смежные, то угол ADF=180°–угол ADB–угол CDB=180°–55°–55°=70°.
Рассмотрим ∆FAD.
AF=AD по условию, следовательно ∆FAD – равнобедренный с основанием FD.
Углы при основании равнобедренного треугольника равны, значит угол AFD=угол ADF=70°.
ответ: 70°