Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.
Площадь параллелограмма равна произведению стороны и высоты, опущенной на эту сторону: S = a · h. У параллелограмма всего 4 высоты, которые попарно равны, поэтому нужно найти всего две разные высоты, опущенные на смежные стороны. Пусть ABCD - параллелограмм, у которого AB = CD = 2 см, BC = AD = 5 см. Из точки B опустим высоту BM на сторону AD и высоту BN на сторону CD. Найдём высоты: S = AD · h1; 5 = 5 · h1; h1 = 5 / 5 = 1 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна) S = CD · h2; 5 = 2 · h2; h2 = 5 / 2 = 2,5 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна) Найдём острый угол BAD параллелограмма. Он будет равен острому углу BCD. Поэтому достаточно найти только один угол. Рассмотрим ΔBAM. Он прямоугольный. Теперь ищем угол BAM: sin BAM = BM / AB, где BM - это высота h1 = 1 см; sin BAM = 1/2; угол BAM = arcsin(1/2) = 30 (градусов) = угол BAD параллелограмма = угол BCD.
Поскольку в условиях указана только величина расстояния от центра окружности до прямой, но не указано под каким углом проведена воображаемая линия от центра до прямой, то возможны следующие варианты:
1. Прямая представляет собой касательную к окружности. В этом случае окружность и прямая будут иметь только одну общую точку, расположенную на расстоянии радиуса окружности от ее центра.
2. Прямая может пересекать окружность как угодно. В этом случае мы получим 2 точки пересечения, каждая из которых будет удалена от центра окружности на расстояние радиуса.