Треугольники ВМР и AMD -- подобны (по двум углам: одна пара углов -- вертикальные, вторая -- накрест лежащие при секущей АР и параллельных сторонах параллелограмма)) S(ABD) = 84 / 2 = 42 (диагональ делит параллелограмм на два равных треугольника)) S(AMD) = 42-14 = 28 треугольники АВМ и АМD имеют общую высоту из вершины А, Площади треугольников с равными высотами относятся как основания))) -- известная Теорема. S(ABM) / S(AMD) = 14 / 28 = BM / MD = 1 / 2 -- это коэффициент подобия треугольников ВМР и AMD Площади подобных треугольников относятся как квадрат коэффициента подобия -- еще одна известная Теорема))) S(BMP) = 28/4 = 7
При вращении ромба вокруг стороны получается тело, состоящее из цилиндра, конуса и с такимже конусообразным углублением, поэтому ищем только объем цилиндра 2пRH, где Н -высота целиндра, которая является стороной ромба, находим по т. Пифагора 225+400=625, она 25. радиус цилиндра явл. высотой ромба, проведенной к стороне. Используя туже теорему сос. и реш. ур. 900-(25+х) ^2=625-х^2, (высота лежит вне ромба и х-длина отрезка от ее основания до вершины ромба, х+25 - от основания высоты до др. вершины) получаем 50х=350, х=7 объем =2п*7*25=350п
(по двум углам: одна пара углов -- вертикальные,
вторая -- накрест лежащие при секущей АР и параллельных сторонах параллелограмма))
S(ABD) = 84 / 2 = 42 (диагональ делит параллелограмм на два равных треугольника))
S(AMD) = 42-14 = 28
треугольники АВМ и АМD имеют общую высоту из вершины А,
Площади треугольников с равными высотами относятся как основания))) -- известная Теорема.
S(ABM) / S(AMD) = 14 / 28 = BM / MD = 1 / 2 -- это коэффициент подобия треугольников ВМР и AMD
Площади подобных треугольников относятся как квадрат коэффициента подобия -- еще одна известная Теорема)))
S(BMP) = 28/4 = 7