Туристическая база предлагает клиентам несколько маршрутов проходящих через станции ABCD и e на рисунке показано расположение станций и ABC BD равносторонние треугольники клиенты сомневаются что длины маршрута в через станции от и через станции были одинаковыми Докажи что AD равно CE
Из условия, что четыре ребра куба параллельны диагонали основания пирамиды, делаем вывод: вершины основания куба лежат на осях основания пирамиды, а 4 других вершины куба лежат на апофемах пирамиды.
Проведём осевое сечение пирамиды через 2 противоположные апофемы.
Куб рассечётся по диагонали, его сечение - прямоугольник. Пусть высота его равна "х", ширина как диагональ равна "х√2".
Из подобия треугольников сечения составим пропорцию:
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
Из условия, что четыре ребра куба параллельны диагонали основания пирамиды, делаем вывод: вершины основания куба лежат на осях основания пирамиды, а 4 других вершины куба лежат на апофемах пирамиды.
Проведём осевое сечение пирамиды через 2 противоположные апофемы.
Куб рассечётся по диагонали, его сечение - прямоугольник. Пусть высота его равна "х", ширина как диагональ равна "х√2".
Из подобия треугольников сечения составим пропорцию:
(9 - х)/(х√2/2) = 9/2.
9х√2 = 36 - 4х,
х(4 + 9√2) = 36,
х = 36/(4 + 9√2) ≈ 2,152090371 .
ответ: длина ребра куба примерно равна 2,15.