Диагональное сечение пирамиды представляет собой треугольник, основание которого есть диагональ квадрата, лежащего в основании пирамиды, а высота - есть высота пирамиды.Найдём диагональ квадрата со стороной а = 14 см
D = √(2а²) = а√2 = 14√2 (см)
Чтобы найти высоту пирамиды, надо рассмотреть прямоугольный тр-к. образованный боковым ребром р = 10, высотой Н и половинкой диагонали 0,5D = 7√2 квадратного основания. Н = √(р² -(0,5D)²) = √(100- 49·2) = √2 (см)
Ну, и наконец, площадь дагонального сечения
S = 0,5·D·Н = 0,5·14√2·√2 = 14(см²)
Путься трапеция прямоугольная и угол DAB прямой. Тогда двумя меньшими сторонами являются стороны AB и BC и они равны по 6 см, опустим перпендикуляр из С к стороне AD. у нас получится квадрат ABCD. У квадрата все углы равны 90 градусов. По условию известно, что больший угол равен 135, большим углом является угол BCD, следовательно угол OCD равен 135-90=45. угол CDO равен 180-90-45=45. у треугольника COD два угла равны, следовательно, он является равнобедренным и сторона CO=OD=6см. Теперь вернемся к нашей трапеции, AO+OD=12 см
Площадь трапеции равна произведения полусуммы оснований на высоту. Тоесть (6+12)/2*6=54см^2
АН=НС. Отсюда по теореме Пифагора АН^2= AB^2 - BH^2=100-64=36; AH=6 cm. AC=2*6=12