BD - высота равнобедренного треугольника, проведенная к основанию, значит и биссектриса.
Биссектриса треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
В треугольнике АВМ ВО - биссектриса, значит
АО : ОМ = ВА : ВМ
ВА = АО · ВМ / ОМ = 18 · 16 / 12 = 24 см
Доказательство свойства биссектрисы (на всякий случай)
Проведем прямую АК║BD, К - точка пересечения этой прямой с прямой ВС.
∠DBA = ∠KAB как накрест лежащие (AK ║ BD, AB секущая),
∠CBD = ∠СКА как соответственные (АК ║ BD, СК секущая),
так как ∠DBA = ∠CBD, то и ∠КАВ = ∠СКА, тогда
ΔАВК равнобедренный, АВ = ВК.
По обобщенной теореме Фалеса:
АО : ОМ = КВ : ВМ или
АО : ОМ = АВ : ВМ.
В трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.