Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Если две прямые параллельны, то при пересечении их с третьей секущей накрест лежащие углы равны.
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Если две прямые параллельны третьей прямой, то они параллельны.
Аксиома, в свою очередь - такая истина,
которую не надо доказывать. В каждой науке есть свои аксиомы, на справедливости которых строят все дальнейшие суждения и их доказательства.
Аксиома параллельных прямых. В одной плоскости с заданной прямой через точку, не лежащую на этой прямой, можно провести только одну прямую, параллельную заданной прямой
Если две прямые на плоскости перпендикулярны одной и той же прямой, то они параллельны.
Получается противоречие из одной - точки Н к прямой с проведены два перпендикуляра. Такое невозможно, поэтому две прямые на плоскости, перпендикулярные одной и той же прямой, параллельны.
Объяснение:
Я думаю что достаточно