М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sayat2007
Sayat2007
10.06.2022 11:18 •  Геометрия

1. Дан куб. Определи, какая из названных в ответе прямых перпендикулярна данной плоскости? а) Плоскости (BCC1) перпендикулярна прямая
AC
AA1
B1C1
BD
AC1
AB
BD1
б) Плоскости (BDD1) перпендикулярна прямая
AC1
AA1
AB
BD1
B1C1
AC
BD
2. В какой ситуации проведённая прямая, которая не находится в плоскости названной фигуры, перпендикулярна плоскости этой фигуры?
Прямая проведена перпендикулярно основаниям трапеции
Прямая проведена перпендикулярно двум сторонам параллелограмма
Прямая проведена перпендикулярно сторонам ромба с общей вершиной
Прямая проведена перпендикулярно двум диаметрам окружности
Прямая проведена перпендикулярно диагоналям прямоугольника


1. Дан куб. Определи, какая из названных в ответе прямых перпендикулярна данной плоскости? а) Плоско
1. Дан куб. Определи, какая из названных в ответе прямых перпендикулярна данной плоскости? а) Плоско

👇
Ответ:
fedarmo
fedarmo
10.06.2022
1. Для определения, какая из перечисленных прямых перпендикулярна данной плоскости, нужно пронаблюдать, как перпендикулярные прямые пересекают плоскость и как они расположены относительно нее.

- Плоскость (BCC1) перпендикулярна прямой AC: Для проверки этого, мы можем взять пару точек на прямой AC и на плоскости (BCC1). Например, возьмем точку A(1, 0, 0) и точку C(1, 1, 0) и проверим, пересекаются ли они. Подставим их координаты в уравнение плоскости (BCC1) и рассмотрим полученное равенство: 0 + 1 + 0 ≠ 0. Так как координаты A и C не удовлетворяют уравнению плоскости (BCC1), то прямая AC не перпендикулярна данной плоскости.
- Плоскость (BCC1) перпендикулярна прямой AA1: Для проверки этого, нужно сравнить наклон прямой AA1 с плоскостью (BCC1). Плоскость (BCC1) имеет угловой коэффициент a = 0, поскольку она параллельна плоскости xy, в то время как у прямой AA1 угловой коэффициент x = x1 - x2 = 1 - 1 = 0. Так как угловые коэффициенты равны, то прямая AA1 перпендикулярна данной плоскости.
- Плоскость (BCC1) перпендикулярна прямой B1C1: Для проверки этого, нужно сравнить наклон прямой B1C1 с плоскостью (BCC1). Плоскость (BCC1) имеет угловой коэффициент a = 0, поскольку она параллельна плоскости xy, в то время как у прямой B1C1 угловой коэффициент x = x1 - x2 = 2 - 1 = 1. Так как угловые коэффициенты не равны, то прямая B1C1 не перпендикулярна данной плоскости.
- Плоскость (BCC1) перпендикулярна прямой BD: Для проверки этого, можно взять пару точек на прямой BD и на плоскости (BCC1). Например, возьмем точку B(2, 0, 0) и точку D(2, 1, 1) и проверим, пересекаются ли они. Подставим их координаты в уравнение плоскости (BCC1) и рассмотрим полученное равенство: 0 + 0 + 0 = 0. Так как координаты B и D удовлетворяют уравнению плоскости (BCC1), то прямая BD перпендикулярна данной плоскости.
- Плоскость (BCC1) перпендикулярна прямой AC1: Для проверки этого, можно взять пару точек на прямой AC1 и на плоскости (BCC1). Например, возьмем точку A(1, 0, 0) и точку C1(1, 1, 1) и проверим, пересекаются ли они. Подставим их координаты в уравнение плоскости (BCC1) и рассмотрим полученное равенство: 0 + 1 + 1 ≠ 0. Так как координаты A и C1 не удовлетворяют уравнению плоскости (BCC1), то прямая AC1 не перпендикулярна данной плоскости.
- Плоскость (BCC1) перпендикулярна прямой AB: Для проверки этого, нужно сравнить наклон прямой AB с плоскостью (BCC1). Плоскость (BCC1) имеет угловой коэффициент a = 0, поскольку она параллельна плоскости xy, в то время как у прямой AB угловой коэффициент x = x1 - x2 = 1 - 2 = -1. Так как угловые коэффициенты не равны, то прямая AB не перпендикулярна данной плоскости.
- Плоскость (BCC1) перпендикулярна прямой BD1: Для проверки этого, нужно сравнить наклон прямой BD1 с плоскостью (BCC1). Плоскость (BCC1) имеет угловой коэффициент a = 0, поскольку она параллельна плоскости xy, в то время как у прямой BD1 угловой коэффициент x = x1 - x2 = 2 - 2 = 0. Так как угловые коэффициенты равны, то прямая BD1 перпендикулярна данной плоскости.

Таким образом, прямая AA1 и прямая BD1 перпендикулярны плоскости (BCC1).

2. В ситуации, когда проведенная прямая не находится в плоскости фигуры, она может быть перпендикулярна плоскости фигуры, если она пересекает плоскость фигуры под прямым углом.

- Прямая проведена перпендикулярно основаниям трапеции: Эта ситуация описывает высоту трапеции. Высота трапеции является перпендикулярной к ее основаниям, поэтому проведенная прямая будет перпендикулярна плоскости трапеции.
- Прямая проведена перпендикулярно двум сторонам параллелограмма: Эта ситуация описывает диагональ параллелограмма. Диагональ параллелограмма соединяет противоположные вершины и пересекает их под прямым углом, поэтому проведенная прямая будет перпендикулярна плоскости параллелограмма.
- Прямая проведена перпендикулярно сторонам ромба с общей вершиной: Эта ситуация описывает высоту ромба. Высота ромба является перпендикулярной к его сторонам, поэтому проведенная прямая будет перпендикулярна плоскости ромба.
- Прямая проведена перпендикулярно двум диаметрам окружности: Эта ситуация описывает радиус окружности. Радиус окружности соединяет центр окружности с любой точкой на его окружности и пересекает его под прямым углом, поэтому проведенная прямая будет перпендикулярна плоскости окружности.
- Прямая проведена перпендикулярно диагоналям прямоугольника: Эта ситуация описывает диагональ прямоугольника. Диагональ прямоугольника соединяет противоположные вершины и пересекает их под прямым углом, поэтому проведенная прямая будет перпендикулярна плоскости прямоугольника.
4,5(90 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ