1.По теореме Пифогора находим: Гипотенуза в кв=(15*15)+(3*3) Гипотенуза в кв=225+9 Гипотенуза в кв=234 Гипотенуза=3√26
S=(15*3)/2=45/2=22,5
2.S=(15*12)/2=180/2=90
Для того,чтобы найти Р ,сначала нужно найти сторону ромба. Итак, у ромба диагонали перпендикулярны и точкой пересечения делятся пополам. В итоге получаются четыре прямоугольных треугольника. Нам понадобится только одна. Итак,обозначим треугольник ACB,где угол С=90, АС=7,5; СВ=6. Тогда,по тереме Пифагора: АВ в кв=(7,5*7,5)+(6*6) АВ в кв=56,25+36 АВ в кв=92,25 АВ=15√41
1) По стороне правильного треугольника можно его вычислить площадь:
S = a²√3 / 4 = (16√3)² · √3 / 4 =64√3 см²
высота этого треугольника:
h = a√3 / 2 = 16 · √3 · √3 / 2 = 24 см
треть высоты:
r = 24 ÷ 3 = 8 см (радиус вписанной в него окружности)
Высота пирамиды, апофема и радиус вписанной в основание пирамиды окружности образуют прямоугольный треугольник:
17² = 8² + H² (теорема Пифагора), где H - высота пирамиды:
H² = 17² - 8² = (17 - 8)(17 + 8) = 9 · 25 ⇒ H = 15 см
V = 1/3 · Sосн · H = 1/3 · 64√3 · 15 = 320√3 см³