Предположим, что существует точка, расстояние от которой до любой вершины четырехугольника меньше 0.5. Тогда четырехугольник целиком лежит внутри окружности с центром в этой точке и радиусом 0.5. Диагональ четырехугольника - это отрезок, лежащий внутри окружности, так как его концы лежат внутри окружности. Значит, диагональ строго меньше диаметра окружности, то есть, меньше 1. Но если сумма диагоналей равна 2, значит, по меньшей мере одна диагональ не меньше 1. Получили противоречие. Значит, такой точки не существует и расстояние от любой точки плоскости до какой-то из вершин четырехугольника не меньше 0.5, что и требовалось.
Решение: Радиус окружности описанной вокруг равностороннего треугольника находится по формуле: R=√3/3 - где а-сторона треугольника Высота в таком треугольнике можно найти по формуле: h=√3/a*a - где а -сторона треугольника По этой формуле найдём сторону равностороннего треугольника: а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см) Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности: R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
Достаточно найти все формулы и подставить значения)
Чтобы найти радиус шара R, нужно найти радиус описанной около шестиугольника окружности r. Из вложения 2 видно, что r равен стороне шестугольника.
Рассмотрим грань призмы, которая является прямоугольником, а диагональ делит его на два прямоугольных треугольника.
Следовательно, сторона основания равна
a^2 = 13^2 - 8^2
a = корень из 105.
Подставляем все значения во вторую формулу (вложение 1).
R^2 = 105 + 64/4
R = 11