1. Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол параллелограмма. 2. Сумма трех углов выпуклого четырехугольника равна 330°. Найдите четвертый угол. ответ дайте в градусах. 3. В прямоугольном треугольнике один из катетов равен 10, другой на 2 больше. Найдите площадь треугольника 4. На клетчатой бумаге с размером клетки 1см × 1см изображена трапеция. Найдите её площадь. ответ дайте в квадратных сантиметрах. 5. Гипотенуза прямоугольного треугольника равна 10 см. Один из его катетов равен 6 см. Найдите другой катет. 6. Найдите площадь ромба, если одна его диагональ равна 12 см, а другая в 0,5 раза больше первой. 7. ( ) 2 часть (изображение с текстом)
BC = 19; KH = 10; Рассмотрим треугольники AKB и BKM (на рисунке одинаковыми цветами отмечены равные углы). Поскольку у них равны два угла, то у них равны и третьи. Т.е ∠BKA = ∠BKM = 180°/2 = 90°. Значит биссектрисы пересекаются под прямым углом. Δ ABN - равнобедренный. Значит BK = KN, в силу того, что AK - медиана. Также Δ ABM равнобедренный. Значит AK = KM; Δ AKN = Δ BKM по двум сторонам и углу между ними. В равных треугольниках равны соответствующие элементы, значит высоты TK и KE равны. Треугольники HBK и TBK равны по углу и общей гипотенузе. Следовательно HK = KT = KE; Теперь найдем площадь S. S = BC*(TK+KE) = 2*BC*HK = 2*19*10 = 380
Параллелограмм АВСД: АВ=СД, ВС=АД=2 АР - биссектриса угла А (<ВАР=<ДАР) ВМ- биссектриса угла В (<АВМ=<СВМ) ΔВАР - равнобедренный АВ=ВР, т.к. углы при основании <ВАР=<ВРА (<ВРА=<ДАР как накрест лежащие углы) ΔАВК=ΔРВК по двум сторонам (ВК-общая, АВ=ВР) и углу между ними (<АВК=<РВК по условию) .Аналогично ΔАВК=ΔАМК по двум сторонам (АК-общая, АВ=АМ) и углу между ними (<ВАК=<МАК по условию) Следовательно, в этих 3 равных треугольниках равны и высоты h=1 (расстояние от точки К до стороны АВ, или ВР, или АМ). Значит высота параллелограмма равна Н=2h=2*1=2 Площадь Sавсд=Н*АД=2*2=4
1. Поскольку нам дан больший угол (65+50=115)
Отнимаем от 180° больший угол (115°) и получаем 65°, так как сумма соседних углов равна 180° ответ - 65°
2. Поскольку сумма углов равна 360°
360-330=30° - ответ
3. Одна сторона - 10, вторая - 12
Формула площади S=ab/2 10•12/2=60 - ответ
4.S=a+b/2•h 2+3/2•4 =10 - ответ
5. По Пифагору √10²-6² =х х=√64=8 - ответ
6. Диагонали 12 , 6 S=1/2•12•6=36 - ответ
7. не знаю