ответ: х=6, у=6
Объяснение: Треугольники ОАА ₁ОВВ₁₁ , ОСС₁₁подобны по двум углам? ∠О-общий, ∠ОА₁А= ∠ОВ₁В= ∠ОС₁С как соответственные углы при параллельных АА1 || ВВ1 || СС1 и секущей ОС. 1) Тогда соответственные стороны этих треугольников пропорциональны ОА/ОА₁= ОВ/ОВ₁=ОС/ОС₁ ⇒ 4/2 =(4+х)/(2+3) ⇒ (4+х)/5=2 ⇒ 4+х=10 ⇒х=6. 2) Тогда сторона ОС= 4+6+12=22, ОС₁- 2+3+у= 5+у 4) ОС/ОС₁= ОА/ОА₁ ⇒ 22/(5+у)=2 ⇒ 5+у=11, ⇒у=6
2) Точки А (4;2; -1), C (-4;2; 1), D (7; -3; 4) вершины параллелограмма АВСD.
Вектор АВ равен DС.
Находим DC= (-4-7; 2-(-3); 1-4) = (-11; 5; -3).
Отсюда находим координаты точки B.
x(B) = x(A) - 11 = 4 - 11 = -7,
y(B) = y(A) + 5 = 2 + 5 = 7,
z(B) = z(A) - 3 = -1 - 3 = -4.
ответ: B(-7; 7; -4).
4) Примем координаты точки A, принадлежащей оси абсцисс и равноудалённой от точек B(1; 2; 2) и C(-2; 1; 4), равными: A;(x; 0; 0)).
Из равенства расстояний AB и AC составим уравнение:
(1 - x)² + 2² + 2² = (-2 - x)² +1² + 4².
1 - 2x+ x² + 4 + 4 = 4 + 4x + x² + 1 + 16.
6x = -12. x = -12/6 = -2.
ответ: точка A((-2; 0; 0).
ответ: 55°; 125°.
Объяснение: Под углом С на рисунке β.(так обозначил угол, не
писать же постоянно ∠ВСД). Под углом D на рисунке α(альфа).
Так обозначил угол СДA.
90°+90°+β+α=360°.
180°+β+α=360°;
β+α=360°-180°=180°;
β-α=70°; ⇒ β=α+70°;
β+α=180°;
α+70°+α=180°; ⇒ 2α=180°-70°;
2α=110°; ⇒ α=110°/2=55°;
β=α+70°=55°+70°=125°.
ответ: 55°; 125°.