8еа7ечдр щеч8ев9га
Объяснение:
Дисщрсшрсщомщнс
1) Пусть т.К - пересечение АС и ВД. Примем ВК за х. Тогда ДК=3х.
2) Из подобия треугольников АВК и АДК: АК/ДК=ВК/АК, отсюда АК^2=ВК*ДК=х*3х=4х^2
3) Из треугольника АВК: АВ^2=ВК^2+АК^2=4х^2, отсюда АВ=2х. Получается, что катет ВК равен половине гипотенузы АВ, значит угол ВАК=30 градусов, тогда:
- угол АВК=180-ВАК-АКВ=60,
- угол АВС=2АВК=120
- углы ВАД и ВСД = 90, т.к. опираются на диаметр
- угол АДС = 360-120-2*90=60
4) градусная мера дуги равна половине вписанного угла, тогда:
- дуга АВ=АДВ/2=АДС/4= 60/4=15
- дуга ВС=ВДС/2=АДС/4=60/4=15
- дуга СД=СВД/2=СВА/4=120/4=30
- дуга АД=АВД/2=АВС/4=120/4=30
Первое, что надо сделать - найти отношение ВР/СР;
Есть очень много я применяю тот, который используется при доказательстве теоремы Чевы. Через вершину В проводится прямая II АС. АР продолжается за точку Р до пересечения с этой прямой в точке Е.
Итак, ВЕ II AC;
Треугольники ЕВК и АКМ подобны (у них углы равны), поэтому ЕВ/АМ = ВК/КМ; в даном случае ВК/КМ = 1, и ЕВ = АМ; (то есть эти треугольники просто равны).
Отсюда ЕВ = АС/2; (ВМ - медиана)
Треугольники ЕВР и АСР тоже подобны по тому же признаку, поэтому ВР/СР = ЕВ/АС = 1/2;
Итак, СР = ВС*2/3; и, соответственно, площадь треугольника АСР
Sacp = S*2/3; (S - площадь треугольника АВС).
Поскольку площадь треугольника ВАМ равна половине площади АВС, а площадь АКМ равна половине АВМ, то
Sakm = S/4;
Таким образом, площадь четырехугольника КРСМ равна
Skpcm = Sacp - Sakm = S*(2/3 - 1/4) = S*5/12;
ответ 12/5;
Я намеренно не объясняю, почему из того, что СР = ВС*2/3; следует, что Sacp = S*2/3;
и там я еще два раза использовал тот же прием при вычислении Sakm.
Конечно, если высоты треугольников равны, их площади относятся, как стороны, к которым эти высоты проведены. Я тут это раз 100 уже объяснял, и потом - если постоянно это все расписывать - каждое решение разбухнет до размеров учебника по геометрии.
равные углы А и С
А= 69.5