Пусть треугольник ABC : <C =90° ; <B=<C =45° (AC =BC треугольник равнобедренный ) ; AB =18 см ; вписанный прямоугольник MNEF ( M∈[AC] , N∈ [BC] , E , F ∈ [ AB] ) .
a) MF : MN = 2 : 5 . MF =2x ; MN =5x ; P =2(MF+MN) =2(2x+5x) =14x. В ΔAFM : AF =MF =2x ; В ΔBEN : BE =NE =MF =2x ; AF +FE +EB =18 см ; * * *FE=MN =5x * * * 2x +5x+2x =18⇒ x =2(см) P =14x =14*2 см =28 см.
б) MF : MN = 5 : 2. MF =5x ; MN =2x ; P =2(MF+MN) =2(5x+2x) =14x. 5x +2x+5x =18⇒12x =18⇔x=1,5 (см) . P =14x=14*1,5 см = 21 см .
Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
Есть 5-тый вопрос,6-той не смогла(╯︵╰,)
5-тый ответ на рисунке (•‿•)