М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Adln48
Adln48
01.09.2021 22:51 •  Геометрия

.△ A B C ∼ △ M K L , ∠ A = ∠ M , ∠ L = ∠ B , B C = 1 0 , A B = 5 , A C = 1 2 , L K = 5 . Найдите периметр △ M L K .

👇
Ответ:
makaroshkaplay
makaroshkaplay
01.09.2021

13.5

Объяснение:

/

4,5(48 оценок)
Открыть все ответы
Ответ:
31Maks31
31Maks31
01.09.2021

 

извините что то не могу добавить рисунок! треугольники  ВОС и АОД подобны    где точка о пересечения диагоналей трапеций    и кэоффициент  подобия равен   34/36 = 17/18    , так как по условию   трапеция прямоугольная    по тоеоме   пифагора обозначим АО   за    х   тогда  ОС =   17/18 *х            

  как известно      Высота прямоугольного треугольника -среднее геометрическое между проекциями катетов на гипотенузу,

 34^2=x*17/18 *x

  x=6√34

 значит   другая диагональ равна  6√34+6√34*17/18,   теперь      сами основания   

по теореме пифагора  нижнее  равна 

  (6√34)^2 +36^2    =√2520

 верхнее 

 34^2+  (6√34*17/18)^2   ~ 2247 

что то    диагональ какие  то       может неправильно написали!

 

 

4,6(49 оценок)
Ответ:
bosiy01
bosiy01
01.09.2021

1) S = 1/6

2) S = 1/2

3) S = 5/9

Объяснение:

Площадь треугольника можно вычислить по следующей формуле:

S = \frac{1}{2}a\cdot{b}\cdot\sin\gamma

1) Обозначим площадь закрашенного ∆-ка S1 (см. рис.1)

Очевидно, т.к. точки делят стороны "единичного" ∆ка на равные отрезки, а угол \gamma у единичного и у малого треугольника общий, то

a_1 = \frac{a}{2};\: b_1=\frac{b}{3};\: \angle\gamma - \small{общий}

и площадь S1 равна

S_1 = \frac{1}{2}a_1\cdot{b_1}\cdot\sin\gamma \\ S_1 = \frac{1}{2}\cdot \frac{ a}{2}\cdot \frac {b}{3}\cdot\sin\gamma = \frac{1}{12}a\cdot{b}\cdot\sin\gamma = \\ = \frac{1}{6} \cdot \bigg(\frac{1}{2}a\cdot{b}\cdot\sin\gamma \bigg) = \frac{1}{6} S

А т.к. S = 1 = \: S1 = \frac{1}{6}

2) Пусть площадь закрашенной фигуры (а это - треугольник, см. рис.) равна S1.

Тогда площадь исходного единичного треугольника будет равна:

площадь S1, плюс общая площадь трех незакрашенных треугольников (обозначим их площади S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:

S =S_1+S_2+S_3 +S_4= 1 \: \: = \\ = S_1 =S - ( S_2{+}S_3{+}S_4)= 1- ( S_2{+}S_3{+}S_4)

Треугольники 2, 3, 4 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:

S_2 = S_3 = S_4 = \frac{1}{6} \cdot S = \frac{1}{6} \cdot1= \frac{1}{6} \: = \\ = S_2 + S_3 + S_4 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}

Соответственно, искомая площадь составляет

S_1= 1- ( S_2+S_3+S_4) = 1 - \frac{1}{2} = \frac{1}{2} \\

3) Пусть площадь закрашенной фигуры (а это - шестиугольник, см. рис.) равна S1

Тогда площадь исходного единичного треугольника будет равна:

площадь S1, плюс общая площадь трех незакрашенных треугольников (пусть их площади будут S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:

S =S_1+S_2+S_3 +S_4= 1 \: \: = \\ = S_1 =S - ( S_2{+}S_3{+}S_4)= 1- ( S_2{+}S_3{+}S_4)

Площади треугольников 2, 3 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:

S_2 = S_3 = \frac{1}{6} \cdot S = \frac{1}{6} \cdot1= \frac{1}{6} \: = \\ = S_2 + S_3 = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}

Но площадь треугольника 4 меньше: у него две стороны втрое меньше чем у исходного единичного, потому его площадь равна:

S_4= \frac{1}{3} \cdot \frac{1}{3} \cdot S = \frac{1}{9} S = \frac{1}{9}\cdot1= \frac{1}{9} \\

Следовательно, общая площадь незакрашенных частей равна:

\\ S_2 + S_3+ S_4 = \frac{1}{6} +\frac{1}{6} + \frac{1}{9}= \\= \frac{1}{3}+ \frac{1}{9}\ = \frac{3 + 1}{9} = \frac{4}{9}

А искомая площадь закрашенной фигуры S1 составляет

S_1=S - ( S_2 + S_3 + S_4 ) = 1 - ( S_2 + S_3 + S_4 ) = \\ = 1 - \bigg( \frac{1}{3} + \frac{1}{9} \bigg) = 1 - \frac{4}{9} = \frac{5}{9}


Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
4,5(19 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ