Центр вписанной окружности в равностороннем треугольнике находится на пересечении биссектрис, медиан и высот и делится в отношении 2:1. Значит, расстояние от центра окружности до вершин треугольника равно 2*корень из 3. Из прямоугольного треугольника находим половину стороны расностороннего треугольника. По теореме Пифангора она равна Корень из (2 корней из 3 в квадрате минус корень из 3 в квадрате) = 3. Значит, сторона равностороннего треугольника равна 3*2 = 6 Успехов!
Назовем трапецию АВСD. АВ=17 см, ВС=16 см, СD=25 см, AD=44 см
Площадь трапеции равна произведению её высоты на полусумму оснований. Основания даны, высоту надо найти.
Один из решения:
Проведем СМ параллельно ВА. СМ=17 см (или ВК параллельно СD. Тогда ВК=25).
Получим треугольник, в котором известны три стороны: 17, 25 и 28 см.
По ф. Герона площадь этого треугольника равна 210 см².
Высота СН является и высотой трапеции.
S(∆ MCD)=CH•MD:2⇒
CH=2•S:MD=420:28=15 см
S(ABCD)=CH•(BC+AD):2=15•30=450 см²
где r - радиус вписанной окружности, а - сторона правильного треугольника
а