1. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований и лежит на средней линии.
Пусть верхнее основание равно х, тогда:
3 · ((48-x) : 2) = (48+х):2,
где в левой части - 3 - количество равных отрезков, согласно условию задачи, а в правой части - та же самая длина средней линии трапеции, выраженная через длины её оснований.
Находим х:
144 - 3х = 48 + х
4 х = 96
х = 24 см.
2. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
Сумма оснований трапеции:
48 + 24 = 72 см.
Следовательно, сумма боковых сторон также равна 72 см.
Находим периметр трапеции:
72 см (сумма длин оснований) + 72 см (сумма длин боковых сторон) = 144 см
Пусть данная пирамида будет МАВСД. Ищем угол МВО. МО- высота пирамиды, ее основание О совпадет с точной пересечения диагоналей АВСД. Т,к. АВСД - квадрат, ВО =ВД/2 Все ребра пирамиды равны. Следовательно, в её основании квадрат, а боковые грани - правильные треугольники. Пусть ребро пирамиды равно а. Тогда диагональ АВСД равна а√2, а ВО равно (а√2):2 Косинус угла МВО равен ВО:ВМ cos МВО= [ (а√2):2 ]:а=(√2):2 - это косинус угла 45° Искомый угол между боковым ребром и плоскостью основания пирамиды равен 45°
144 см
Объяснение:
1. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований и лежит на средней линии.
Пусть верхнее основание равно х, тогда:
3 · ((48-x) : 2) = (48+х):2,
где в левой части - 3 - количество равных отрезков, согласно условию задачи, а в правой части - та же самая длина средней линии трапеции, выраженная через длины её оснований.
Находим х:
144 - 3х = 48 + х
4 х = 96
х = 24 см.
2. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
Сумма оснований трапеции:
48 + 24 = 72 см.
Следовательно, сумма боковых сторон также равна 72 см.
Находим периметр трапеции:
72 см (сумма длин оснований) + 72 см (сумма длин боковых сторон) = 144 см
ответ: 144 см