В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Следовательно, основание АС делится на два равных отрезка АН и НС, и угол ВНС является прямым. Мы получаем два прямоугольных треугольника, у которых все три стороны равны: АВ = ВС, т.к. треугольник равнобедренный по условию; АН = НС, т.к. ВН - медиана; ВН - общая сторона По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
Годится и второй признак равенства треугольников: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. В нашем случае: АВ = ВС по условию; угол А равен углу С, т.к. углы при основании равнобедренного треугольника равны; угол АВН равен углу СВН, т.к. ВН - биссектриса
Первый признак равенства треугольников тоже подходит: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. В нашем случае: АВ = ВС по условию АН = НС, т.к. ВН - медиана угол А равен углу С, т.к. в равнобедренном треугольнике углы при основании равны.
1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²