М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Илий
Илий
01.01.2020 07:03 •  Геометрия

Здравствуйте решить задачу на фото. Решается с синусов. за решение.


Здравствуйте решить задачу на фото. Решается с синусов. за решение.

👇
Ответ:
Макс528103
Макс528103
01.01.2020

Відповідь:

Пояснення:

a/sinA=c/sinC=b/sinB

Угол В=180-120-А=60-А

2sgr(2)/sin(180-60) = 2/sin(60-A)

sin(60-A)=1/2×sqr(3)/sqr(2)=0,61

A=60-arcsin 0,61

4,7(82 оценок)
Открыть все ответы
Ответ:
Ангелиныч1
Ангелиныч1
01.01.2020

Получили прямоугольный треугольник, одним катетом АС которого является перпендикуляр, а наклонная АВ является гипотенузой, проекция на плоскость ВС - это второй катет. Ищем его по теореме Пифогора.

√(81-36)=√45см

Получили треугольник АВС, в котором АС=6см, АВ=9см, ВС=√45см

Из вершины прямого угла С проводим перпендикуляр СН на гипотенузу АВ. АН - это и есть проекция перпендикуляра АС на наклонную АВ. Можно решать через подобие полученных треугольников, но лучше по теореме Пифагора.

Пусть ВН=х, тогда АН=9-х

Из треуг. АНС:  CH^2=36-(9-x)^2

Из треуг. СНВ:  CH^2=45-x^2

Приравниваем:

36-(9-x)^2=45-x^2

36-81+18х-x^2==45-x^2

18x=90

x=5

CH=√(45-25)=√20=2√5см

4,6(58 оценок)
Ответ:
agarkovatanech
agarkovatanech
01.01.2020
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2.
Высота пирамиды - это высота равнобедренного 
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.

Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.

Отсюда  площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.

Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.

Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.
4,5(20 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ