Вправильной четырехугольной усеченной пирамиде стороны оснований равны 10 и 8 см, а высота равна корню из 3 см. найдите площадь боковой поверхности пирамиды.
1) Найдем площадь боковой грани пирамиды. Эта боковая грань - трапеция с основаниями 10 и 8.
Найдем ее высоту. Из середины стороны верхнего основания опустим перпендикуляр на плоскость нижнего основания. Соединим основание перпендикуляра с серединой соответствующей стороны нижнего основания. Получим прямоугольный треугольник, в котором гипотенуза будет нужной нам высотой, и ее нужно найти.
2) Один из катетов равен высоте пирамиды, а другой равен (10-8)/2=1, так как сторона верхнего основания на 2 меньше стороны нижнего, а центры верхнего и нижнего оснований совпадают.
3) По теореме Пифагора, гипотенуза треугольника с катетами 1 и корень из 3 равна 2, тогда высота трапеции равна 2, а ее основания - 8 и 10.
4) Тогда площадь трапеции равна 2*(10+8)/2=18.
5) Мы нашли площадь одной грани, площадь боковой поверхности в 4 раза больше, так как граней 4, и она равна 18*4=72.
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
1) Найдем площадь боковой грани пирамиды. Эта боковая грань - трапеция с основаниями 10 и 8.
Найдем ее высоту. Из середины стороны верхнего основания опустим перпендикуляр на плоскость нижнего основания. Соединим основание перпендикуляра с серединой соответствующей стороны нижнего основания. Получим прямоугольный треугольник, в котором гипотенуза будет нужной нам высотой, и ее нужно найти.
2) Один из катетов равен высоте пирамиды, а другой равен (10-8)/2=1, так как сторона верхнего основания на 2 меньше стороны нижнего, а центры верхнего и нижнего оснований совпадают.
3) По теореме Пифагора, гипотенуза треугольника с катетами 1 и корень из 3 равна 2, тогда высота трапеции равна 2, а ее основания - 8 и 10.
4) Тогда площадь трапеции равна 2*(10+8)/2=18.
5) Мы нашли площадь одной грани, площадь боковой поверхности в 4 раза больше, так как граней 4, и она равна 18*4=72.