Построение к решениям заданий 1, 2 и 3 см. на фото.
1) 1¹ - проекция точки пересечения прямой и плоскости, т. к. плоскость фронтально проецирующая. Горизонтальную проекцию точки пересечения можно найти с третьей проекции.
Расстояние от оси х до точки 1 взято с профильной проекции и отмечено фигурной скобкой.
Точка n¹ находится ниже а¹b¹c¹, значит на горизонтальной проекции n и часть прямой до точки пересечения невидимая.
2) g и g₁¹- проекции горизонтали, f и f¹ - проекции фронтали.
3) Т.к. ВЕ:ЕС=1:2, отступим отрезок е¹с¹ в два раза больше b¹е¹. Получим точку с¹. АВСD -параллелограмм, значит проекции противоположных сторон а¹b¹с¹d¹ и аbсd параллельны.
АЕ - высота, следовательно ек перпендикулярен горизонтальной проекции горизонтали bc. Сносим на проекцию ек точку а и достраиваем параллелограмм.
Надеюсь,что вам. Желаю удачи!
Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²