Обозначим вершины трапеции АВСД. Из вершины С тупого угла трапеции опустим высоту СН на АД. АВСН - прямоугольник ( т.к. трапеция прямоугольная). ВС=АН, АВ=СН. Площадь трапеции равна произведению её высоты на полусумму оснований. S АВСД=СН*(АД+ВС):2 Пусть коэффициент отношения боковых сторон равен х. Тогда АВ=4х, СД=5х. СН=АВ=4х. Из прямоугольного треугольника СНД НД²=СД²-СН² 18=√(25х²-16х²)=3х х=НД:3=18:3=6 см АВ=4х=4*6=24 см АН=√(АС²-СН²)=10 см ВС=АН=10 см АД=10+18=28 см S АВСД=СН*(АД+ВС):2 S АВСД=24*(28+10):2=456 см²
Основание высоты правильной пирамиды проецируется в центр описанной вокруг основания пирамиды окружности.
Обозначим пирамиду МАВСD, МО - высота, О - центр описанной окружности= точка пересечения диагоналей квадрата.
АС =8√2 ( по формуле диагонали квадрата).
МО перпендикулярна основан, ⇒ перпендикулярна каждой прямой, проходящей в плоскости АВСD через О.
∆ МОС - прямоугольный.
OC=4√2
По т.Пифагора МС=√(MO²+CO*)=√(49+32)=9
Площадь боковой поверхности пирамиды равна сумме площадей ее граней, которые являются равнобедренными треугольниками,
иначе
Площадь боковой поверхности - произведение апофемы на полупериметр основания.
Высота МН грани ( апофема) является медианой и делит ВС пополам. По т.Пифагора
МН=√(MB²-BH*)=√(81-16)=√65
S=h•MH=16•√65=16√65 (ед. площади)