Менелая
PK/KQ *QS/SN *NR/RP =1 <=> 2/3 *3/1 *NR/RP =1 <=> NR/RP= 1/2
PN/NR *RS/SK *KQ/QP =1 <=> 1/1 *RS/SK *3/5 =1 <=> RS/SK= 5/3
Чевы
PN/NR *RM/MQ *QK/KP =1 <=> 1/1 *RM/MQ *3/2 =1 <=> RM/MQ= 2/3
Менелая
QK/KP *PS/SM *MR/RQ =1 <=> 3/2 *PS/SM *2/5 =1 <=> PS/SM= 5/3
RS/SK *KL/LN *NP/PR =1 <=> 5/3 *KL/LN *1/2 =1 <=> KL/LN= 6/5
RN/NP *PL/LS *SK/KR =1 <=> 1/1 *PL/LS *3/8 =1 <=> PL/LS= 8/3
PL/PM =PL/PS *PS/PM =8/11 *5/8 =5/11
PL/LM= 5/6
Разумеется, после того, как установлено, что QN - медиана, можно сразу сказать, что
RM/MQ =PK/KQ =2/3 (PR||KM)
PL/ML =LN/LK (PLN~MLK)
PS/MS= SR/SK (PSR~MSK)
1) Отразим рисунок относительно прямой AB, окружности перейдут сами в себя, а K – перейдёт в точку K', симметричную относительно прямой AB. Если K не лежит на AB, то K и K' не совпадают, и K' – тоже точка касания, чего быть не может.
2) Радиусы, проведённые в точку касания, перпендикулярны касательной, поэтому AN и BM перпендикулярны NM, а тогда параллельны, ANMB – прямоугольная трапеция.
Проведём высоту трапеции AD. ANMD – прямоугольник, поэтому MD = AN = r, тогда BD = 2r. Кроме того, AB = AK + KB = 4r, поэтому ∠DAB = 30° (противолежащий катет равен половине гипотенузы), а по теореме Пифагора .
Площадь трапеции ANMB равна
Площадь сектора KAN с центральным углом 90° + 30° = 120° = π/3 равна
Площадь сектора KBM с центральным углом 90° - 30° = 60° = π/6 равна
Площадь искомой фигуры
98°; 79°
Объяснение:
Возьмём ΔABC, в котором AB=BC, а AC - основание. Рассмотрим 2 случая.
1. ∠BAC < ∠ABC.
1) ∠BAC = ∠BCA по свойству углов при основании равнобедренного Δ.
2) Пусть x - ∠BAC, тогда x - ∠BCA и (x+57) - ∠ABC. По теореме о ∠+∠+∠ Δ ∠BAC + ∠BCA + ∠ABC = 180°. Составим и решим уравнение:
x + x + (x+57) = 180
2x + x + 57 = 180
3x = 180 - 57
3x = 123
x = 41° - ∠BAC
∠ABC = x + 57 при x = 41.
Если x = 41, то x + 57 = 41 + 57 = 98° - ∠ABC
2. ∠ABC < ∠BAC
1) см. 1) в 1.
2) Пусть x - ∠ABC, тогда (x+57) - ∠BAC и (x+57) - ∠BCA. -//-:
x + 2(x+57) = 180
x + 2x + 114 = 180
3x = 180 - 114
3x = 66
x = 22° - ∠ABC
∠BAC = x + 57 при x = 22.
Если x = 22, то x + 57 = 22 + 57 = 79° - ∠ABC