Многоугольник - часть плоскости, ограниченная замкнутой ломаной без самопересечений, любые два соседних звена которой не лежат на одной прямой.
Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника.
Диагональ многоугольника - отрезок, соединяющий любые две несоседние вершины.
Периметр многоугольника - сумма длин всех его сторон.
Выпуклый многоугольник - это многоугольник, лежащий по одну сторону от любой прямой, содержащей его сторону.
Формула суммы углов выпуклого многоугольника:
180°(n - 2)
Вывод формулы:
Отметим произвольную точку О внутри выпуклого многоугольника и соединим ее с вершинами. Получили n треугольников. Сумма углов одного треугольника равна 180°, а всех треугольников 180°·n.
Угол при вершине О составляет 360°. Отнимем его от суммы углов треугольников и получим сумму углов выпуклого многоугольника:
180°·n - 360° = 180°(n - 2)
Sбок пов.=Росн*Н
Pосн=4*с, с - сторона ромба
диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
прямоугольный треугольник:
катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы
катет b =15 см (30:2) - (1/2) диагонали ромба
гипотенуза с - сторона ромба
по теореме Пифагора: c²=8²+15², c=17 см
бОльшая диагональ призмы =50 см -наклонная.
Большая наклонная имеет бОльшую проекцию, =>
рассмотрим прямоугольный треугольник:
гипотенуза с=50 см - бОльшая диагональ призмы
катет а= 30 см - бОльшая диагональ основания призмы
катет H - высота призмы, найти.
по теореме Пифагора:
50²=30²+H². H²=1600. H=40 см
Sбок.пов=4*17*40
Sбок.пов=2720 см²