В треугольнике авс проведён отрезок ДЕ, параллельный стороне АС, так что Д лежит на стороне АС, а Е лежит на стороне ВС. Найдите ДЕ, если АВ=15 см,АС=18см и АД=10см.
Сделаем рисунок. Для простоты оставим на рисунке только диаметры шаров. Все 5 шаров касаются попарно друг друга. Точки их касания лежат на серединах отрезков, соединяющих центры шаров. Эти отрезки образуют правильную четырехугольную пирамиду, все ребра которой равны 2r. Половина диагонали квадрата, составленного из отрезков, соединяющих центры четырех шаров (основание пирамиды), равна DO=r√2. Тогда ВО (высота пирамиды) равна по Пифагору из треугольника DOB: ВО=√(DB²-DO²) или ВО=√(4r²-2r²) =r√2. Точка О (центр квадрата) расположена на расстоянии r от плоскости, на которой лежат 4 шара. Точка В (центр пятого шара) - на расстоянии r от верхней точки М этого шара. Тогда искомое расстояние MN=BO+2r или MN=r√2+2r = r(√2+2). ответ: искомое расстояние равно r(√2+2).
Проведём ВМ║АD. Четырехугольник АВМD- параллелограмм ( стороны попарно параллельны)
DM=AB=18 см
В ∆ ВМС ∠ВМС=∠АDМ.
МС=DC-DM=27-18=9
По т.косинусов -cos угла ВМС=[ВС*- (ВМ*+МС*)]/2BM•BC⇒
cos ∠BMC=18/54=1/3
Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
S ABMD= AD•DM•sin ADM
sin2 α + cos2 α = 1⇒
sin ∠ADM=√(1-1/9)=√8/3=2√2/3
S ABMD=18•3•2√2•3=36√2 см²
S∆ ABD=SABMD/2=18√2
В трапеции треугольники, образованные при пересечении диагоналей, подобны. k=DC/АВ=27/18=3/2
Тогда DB=DK+KB=5 частей АН- общая высота треугольников АКD и АDВ .
Отношение площадей треугольников с равными высотами равно отношению их оснований.
S ∆ ADK=3/5 S∆ADB=3•18√2/5=54√2/5=10,8√2 см²
------Примечание. Это один из вариантов решения этой задачи. Другой дан мной 6.03 этого года.