М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
9092005apv
9092005apv
23.07.2020 16:08 •  Геометрия

Дан отрезок CB= 17 мм, и известно отношение отрезков CBJK=214.
Вычисли длину отрезка JK.

👇
Открыть все ответы
Ответ:
alegarxih
alegarxih
23.07.2020

DOA = 70°.   Дано в задаче.

BOC = DOA = 70°.  Вертикальные углы равны (1).

DOC = 180° - 70° - 110°.    Смежные углы в сумме дают 180° (2).

AOB = DOC = 110°.    (1).

ODC = (180° - 110°) / 2 = 35°.   Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).

ADO = 90° - 35° = 55°.     Два угла составляют прямой угол (5).

OAD = ADO = 55°.      (4).

OAB = 90° - 55° = 35°.       (5).

OBA = OAB = 35°.     (4).

OBC = 90° - 35° = 55°.      (5).

OCB = OBC = 55°.        (4).

Все остальные углы состоят из других и их можно посчитать по сумме. Например:

DAB = DAO + BAO = 55° + 35° = 90°.

4,8(21 оценок)
Ответ:
hvbdnnd
hvbdnnd
23.07.2020

Дан равнобедренный ΔABC, AB — основание. ∠A = ∠B.

1-й случай: биссектриса угла при основании (AD), высота из вершины на основание тр-ка (CH). ∠AEH = 75°.

Так как CH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ CH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

2-й случай: биссектриса угла при основании (AD), высота из противоположного угла при основании тр-ка (BH). ∠AEH = 75°.

Так как BH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ BH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

3-й случай: биссектриса угла при вершине (CD), высота из угла при основании тр-ка (AH). ∠CEH = 75°.

CD — биссектриса, и высота и медиана, т.к. опущена из вершины на основание равнобедренного тр-ка.

Так как AH — высота, тогда ΔCEH — прямоугольный, ∠CHE = 90° (EH ∈ AH)

∠ECH = 90°−∠CEH = 90°−75° = 15°

∠A = ∠B = 90°−∠ECH = 90°−15° = 75° (т.к. ΔCBD — прямоугольный, ∠CDB = 90°).

ответ: угол при основании данного треугольника может быть равен 15° или 75°.


В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
4,4(91 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ