а) Меньшая высота параллелограмма находится из равнобедренного прямоугольного треугольника АВН (острые углы = 45°). По Пифагору 2*ВН²=АВ². Тогда 2*ВН²=а²*2, отсюда ВН=а. Это и высота параллелепипеда.
б) Угол между плоскостью АВС₁ и плоскостью основания - это двугранный угол, измеряемый градусной мерой линейного угла D1KD, образованный перпендикулярами D1K и DK к ребру АВ. Cинус этого угла равен отношению DD1/KD1. В прямоугольном треугольнике АКD:
<КАD =<KDA = 45°. Значит АК=КD= а√2.
Тогда КD1=√(КD²+DD1²)=√(2а²+а²)=а√3.
Sinα = a/а√3 = √3/3.
ответ: искомый угол равен arcsin(√3/3).
в) Площадь боковой поверхности параллелепипеда равна произведению периметра основания на высоту, то есть Sб=2*(а√3+2а)*а =а²(2+√2).
г) Площадь полной поверхности параллелепипеда равна сумме площадей баковой поверхности и удвоенной площади основания. То есть
Sполн=а²(2+√2)+2*AD*BH=а²(2+√2)+4а² = а²(6+√2).
1) пусть одна сторона х, тогда другая - 2.5х
х*2.5х=250
2.5х^2=250
х^2=100
х=10см первая сторона
10*2,5=25см вторая сторона
2) длина х
ширина y
х*y=9
(х+y)*2=12
х+y=6
y=6-х
х*(6-х)=9
6х-х^2-9=0
х^2-6х+9=0
(х-3)(х-3)=0
х=3см длина
y=6-3=3см ширина
Объяснение: