1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Центр О вписанной в треугольник окружности является точкой пересечения его биссектрис. Т.к. в равнобедренном треугольнике биссектриса ВН, проведенная к основанию, совпадает с медианой и высотой, то центр О вписанной в равнобедренный ΔАВС окружности лежит на высоте и медиане ВН, проведенных к основанию. Значит угол ВНС - прямой и АН=СН. По условию СК/КВ=5/8, значит СК=5х, КВ=8х, ВС=СК+КВ=13х По свойству касательных, проведенных из одной точки к окружности СК=СН=5х, тогда АС=2*5х=10х Из прямоугольного ΔВНС найдем ВН=√(ВС²-СН²)=√(13х)²-(5х)²=√144х²=12х Площадь Sавс=ВН*АС/2 540=12х*10х/2 х=√9=3 СК=5*3=15 КВ=8*3=24 АВ=ВС=13*3=39 АС=10*3=30 Полупериметр р=(2АВ+АС)/2=(2*39+30)2=54 Радиус ОК=Sавс/p=540/54=10 Из прямоугольного ΔВОК найдем ВО: ВО=√(КВ²+ОК²)=√24²+10²=√676=26
Объяснение:
Вспомним теорему Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: c²=a²+b².
Дано:
прямоугольный треугольник
а=4 см
с=5 см
b=?
По т. Пифагора:
c²=a²+b² => b=√(c²-a²)
b=√(5²-4²)=√(25-16)=√9=3 см.