диагональ равна 2√13см
Объяснение:
опускаем высоту на большее основание. получаем два прямоугольных треугольника. Если опустим обе высоты,то прекция меньшего основания на большое равна 5 см. оставшиеся 2 см делятся поровну по 1 см около каждой боковой стороны,поскольку тарпеция равнобедренная и углы при основаниях равны.Высоты равны,боковые стороны равны,а угол проитив боковой стороны 90 по построению. оба треугольника при боковых сторонах конгруэнтны, значит стороны треугольника при боковой стороне и высоте равны √17 , 1 и Н по Пифагору получаем
Н²=(√17)² - 1² =17 - 1 =16, Н=4 Высота 4 см. А от большого основания остается 6 см -катет треугольника ,образованного высотой,диагональю и 6 см от большого основания. Ищем диагональ по Пифагору.
Д²=6²+4²=36+16=52 =4*13
извлекаем корень и получаем диагональ равна 2√13см
Рассмотрим четырёхугольник ABCD.
По условию задачи имеем:
AB = BC и AD = DC.
Опустим высоту BH треугольника ABC из вершины B на основание AC.
Так как AB = BC, то треугольник ABC - равнобедренный и высота BH является одновременно и медианой, т.е. AH = CH.
Аналогично опустим высоту DG треугольника ADC из вершины D на основание AC.
Так как AD = DC, то треугольник ADC - равнобедренный и высота DG является одновременно медианой, т.е. AG = CG.
Так как AH = CH и AG = CG, то точки H и G совпадают.
BH и DG перпендикулярны AC и точки H и G совпадают.
Следовательно, BH и DG лежат на прямой перпендикулярной AC и BD является диагональю четырехугольника ABCD.
Итак получили, что диагонали AC и ВD перпендикулярны, что и требовалось доказать.
можете не благодарить
ответ во вложении. Нужно подставлять значения х и у и смотреть, больше квадрата радиуса они или меньше
Объяснение: