Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать
Объяснение:
Если три стороны параллелограмма равны, то и четвёртая сторона тоже равна им, значит этот параллелограмм - ромб, в котором периметр равен четырём длинам сторон: Р=4АВ.
Пусть точки О и Н середины сторон DA и СВ соотсетственно. АО=НВ, ОН||АВ, значит АВНО - параллелограмм, в котором ОН=АВ, значит ОН=Р/4. ЧТД.
Как "Лучшее решение" не забудь отметить, ОК?!.. ;)))