Припустимо, що наша трапеція АВСД, в якої паралельні сторони, тобто її основи ВС=4см, АД=25см. Бічні сторони АВ=13 см, СД=20 см. Площа трапеції дорівнює добутку висоти трапеції на половину суми його основ. Тобто для того, щоб знайти площу трапеції нам потрібно знайти розмір її висоти. Для цього з верши В та С опустимо дві висоти на основу АД. У нас вийшло дві висоти ВК та СН, які між собою рівні, оскільки КВСН - це прямокутник, а в прямокутника протилежні сторони рівні. А це означає, що ВС=КН=4 см. Також зазначимо, що АК=АД-КН-ДН=25-4-ДН=21-ДН Розглянемо трикутник АВК, він прямокутний, бо ВК - це висота, а значит в цьому трикутнику ∠К=90°. АВ - гіпотенуза, а ВК та АК - це два катети. По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що АВ²=ВК²+АК² 13²=ВК²+(21-ДН)² ВК²=13²-(21-ДН)² ВК²=169-(441-42ДН+ДН²) ВК²=169-441+42ДН-ДН². ВК²= -272+42ДН-ДН².
Розглянемо трикутник ДСН, він прямокутний, бо СН - це висота, а значит в цьому трикутнику ∠Н=90°. СД - гіпотенуза, а СН та ДН - це два катети. По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що СД²=СН²+ДН² 20²=СН²+ДН² СН²=20²-ДН² СН²=400-ДН²
А оскільки ВК=СН, значить -272+42ДН-ДН²=400-ДН² 42ДН-ДН²+ДН²=400+272 42ДН=672 ДН=672/42 ДН=16 см.
СН²=400-ДН² СН²=400-16² СН=√144 СН=12 см - висота трапеції. Тепер значення висоти трапеції підставляємо у формулу площі трапеції: Р трапеції=СН*(ВС+АД)/2 = 12*(4+25)/2=12*29/2=174 см²
Обозначим углы 1,2,3,4, тогда <1+<2+<3=240 <2+<3+<4=260 <3+<4+<1=280, сложим данные равенства 2•(<1+<2+<3+<4)+<3=780, сумма углов выпуклого четырёхугольника равна <1+<2+<3+<4=360, тогда 2•360+<3=780, <3=60. Из второго уравнения вычтем первое, а из третьего второе, <4-<1=20,<4=<1+20 <1-<2=20,<2=<1-20 <3=60, тогда <1+<2+<3+<4=<1+(<1-20)+60+(<1+20)=3<1+60=360, <1=100, тогда <4=120, <2=80 ответ: 100,80,60,120 а) периметр это сумма длин всех сторон, у параллелограмма они попарно равны, тогда сумма смежных сторон равна 12. Пусть меньшая сторона равна x, тогда вторая x+2, x+x+2=12, x=5, x+2=7 Стороны равны 5,5,7,7 б) x+3x=12, x=3, 3x=9 Стороны равны 3,3,9,9 в) пусть стороны равны а и b, тогда а+а+b=17, 2•(a++b)=24, a=12-b a+a+b=2•a+b=2•(12-b)+b=24-b=17, b=7,a=12-7=5 Стороны равны 5,5,7,7
АВF образуют прямоугольный треугольник, поэтому воспользуемся теоремой пифагора
Гипотенуза = корень суммы двух катетов