В Нур-Султане современное здание «дворец мира и согласия» имеет форму правильной четырёхугольной пирамиды высотой 62м и площадью основания 3844м^2. Найдите площадь полной поверхности пирамиды (ответ округлите до десятых)
Площадь боковой поверхности цилиндра: S=2πRH=8√3π ⇒ Н=4√3/R. Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R. В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4). АВ=2АМ=2√(R²-4). По условию АВ=Н. Объединим оба полученные уравнения высоты. 4√3/R=2√(R²-4), возведём всё в квадрат, 48/R²=4(R²-4), 12=R²(R²-4), R⁴-4R²-12=0, R₁²=-2, отрицательное значение не подходит. R₂²=6. Н=2√(6-4)=2√2 см. Площадь искомого сечения равна: S=H²=8 см² - это ответ.
проведем радиусы в точки пересечения секущей ОР и ON
треугольник ОРN - равнобедренный, его высота ОК=3 является также и медианой, т.е. PK=KN=PN / 2 = 10 / 2 = 5
из прямоугольного треугольника OKN по теореме Пифагора определим радиус, он равен гипотенузе треугольника с катетами 3 и 5 см
R = OP = ON = OM = √(5^2 + 3^2) = √(25 + 9) = √34 см ~~ 5,8 см
ответ немного смущает, но видимо это "модификация" преподавателя, для защиты от списывания, наверное цифры у Сканави были другие, если конечно я не ошибся в "расчётах"
12437,2 м²
Объяснение:
В основании пирамиды находится квадрат площадью 3844 м², Значит сторона квадрата равна:
Для нахождения площади полной поверхности пирамиды нужно сложить площадь боковой поверхности и площадь основания.
Sполн. = Sбок. + Sосн.
Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему:
Sбок=p×L
где p - полупериметр основания, L - апофема. L = SK
Апофему SK найдём из прямоугольного треугольника SKO(<O=90°) по по теореме Пифагора. Высота пирамиды- SO=62 м (по условию).
Sбок= 124×69,3 = 8593,2 м²
Sполн= 8593,2+3844 = 12437,2 м²