У прямокутній трапеції точка дотику вписаного у неї кола ділить більшу основу на відрізки 12 і 16 починаючи від вершини прямого кута знайдіть меншу основу трапеції.
В чотрикутник можно вписати коло тільки тоді, коли суми протилежних сторін рівні: АД+ВС=АВ+СД.
З властивості дотичних до кола , проведених з однієї точки маємо:
АЕ=АМ , ∠А=90° та ОМ ⊥ АВ , так як ОМ- то є радіус кола. Отже АМОЕ- квадрат зі стороною 12 . Аналогічно ВМ =ВК , ∠В=90° ,ОК ⊥ ВС . Отже МВКО - квадрат зі стороною 12. АВ=АМ+МВ=12+12= 24.
КС=FC, ED=DF( як дотичні)
ΔСОД- прямокутний ( там довгенько доводити на основі подібності трикутників и знання , що ОД і ОС- бісектріси ) та ОF- висота прямокутного трикутника, проведена до бісектриси. По леммі про висоту прямкутного трикутника : ОF²= CF*FD
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Параллельные прямые, которые исходят из точек С, Р и К перпендикулярны к прямой С1К1. Проведем CN, NP1,C1M, ML так, что CMPN и MLK1C1 - прямоугольники. Из условия СС1 = 3 см, РР1 = 5 см. Поскольку СС1Р1N - прямоугольник (три угла равны 90 градусов), то CC1 = NP1 = 3 см. Аналогично из прямоугольника MPP1C1: MC1 = PP1 = 5 см, из прямоугольника MLK1C1: МС1 = LK1 = 5 см. CM = NP = NP1 + P1P, CM = 3 + 5 = 8 см. Рассмотрим треугольники CMP и KLP: СР = РК по условию, <MPC = <KPL как вертикальные, <CMP = <KLP = 90 градусов. Следовательно, треугольника CMP и KLP равны по стороне и двум прилежащим к ней углам. Исходя из равенства треугольников, CM = KL = 5 см. KK1 = KL + LK1. Имеем: KK1 = 8 + 5 = 13 см. ответ: 13 см.
Відповідь:
21
Пояснення:
Відповідь:
Пояснення:
дано: АВСД- прямокутна трапеція, АЕ=12 , ЕД=16 см
Знайти: ВС-?
Рішення:
В чотрикутник можно вписати коло тільки тоді, коли суми протилежних сторін рівні: АД+ВС=АВ+СД.
З властивості дотичних до кола , проведених з однієї точки маємо:
АЕ=АМ , ∠А=90° та ОМ ⊥ АВ , так як ОМ- то є радіус кола. Отже АМОЕ- квадрат зі стороною 12 . Аналогічно ВМ =ВК , ∠В=90° ,ОК ⊥ ВС . Отже МВКО - квадрат зі стороною 12. АВ=АМ+МВ=12+12= 24.
КС=FC, ED=DF( як дотичні)
ΔСОД- прямокутний ( там довгенько доводити на основі подібності трикутників и знання , що ОД і ОС- бісектріси ) та ОF- висота прямокутного трикутника, проведена до бісектриси. По леммі про висоту прямкутного трикутника : ОF²= CF*FD
12²=CF*16
CF=144:16=9
BC=BK+KC=12+9=21