Поскольку картинка симметрична относительно прямой AC, то DK = BK = AC. А так как диагонали в квадрате равны, AC = BD. Таким образом, треугольник BKD – равносторонний, и угол BKD равен 60°. Опять в силу симметрии относительно прямой AC KA – биссектриса этого угла.
Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
Чертеж не обязателен. а)1 случай. 40°-угол при вершине,значит углы при основании равны по (180°-40°)÷2=70° ответ:40°;70°;70°. 2 случай. 40°-один из углов при основании,углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(40°×2)=100° ответ:40°;40°;100°. б) 1 случай. 60°-угол при вершине,значит каждый угол при основании равен (180°-60°)÷2=60° ответ:60°;60°;60°. 2 случай. 60°- угол при основании,а углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(60°×2)=60° ответ:60°;60°;60°. в) один случай 100°-угол при вершине,значит каждый угол при основании равен (180°-100°)÷2=40° ответ:100°;40°;40°.
Поскольку картинка симметрична относительно прямой AC, то DK = BK = AC. А так как диагонали в квадрате равны, AC = BD. Таким образом, треугольник BKD – равносторонний, и угол BKD равен 60°. Опять в силу симметрии относительно прямой AC KA – биссектриса этого угла.
ответ
30°.