1. Соединяем концы хорды радиусами с центром окружности. Получаем равнобедренный треугольник с основанием 8см и боковыми сторонами равными радиусу окружности. Высота = 3 см. 2. Рассмотрим прямоуг. тр-к, который отсекает высота от упомянутого выше треугольника. Поскольку высота равнобедренного тр-ка является и его медианой, то катеты этого отсеченного тр-ка равны 3см и 8:2=4 см. 3. Тогда гипотенуза, равная радиусу R окружности определяется по формуле квадрат гипотенузы равен сумме квадратов катетов. R= √(3²+4²) = 5 (см).
Равнобедренный △ АВС
∠А = ∠С = 40° (углы при основании)
Найти:∠В = ?°.
Решение:Сумма углов треугольника равна 180°.
=> ∠В = 180° - (40° + 40°) = 100°
ответ: 100°Задача#2.Дано:△АВС
∠А < в 4 раза ∠В
∠С < на 90° ∠В
Найти:а) ∠А, ∠В, ∠С
б) сравнить АВ и ВС.
Решение:а) Пусть х - ∠А, 4х - ∠В, 4х - 90 - ∠С
Сумма углов треугольника равна 180°.
х + 4х + (4х - 90) = 180
9х = 90
х = 30
30° - ∠А
30° * 4 = 120° - ∠В
120° - 90° = 30° - ∠С
б) Так как ∠А = ∠С = 30° => △АВС - равнобедренный.
=> АВ = ВС, по свойству равнобедренного треугольника.
ответ: а) 30°, 30°, 120°. б) АВ = ВС.Задача#3.Дано:△АВС
∠АВЕ = 104°
∠DCF = 76˚
AC = 12 см
Найти:АВ = ? см.
Решение:Сумма смежных углов равна 180°.
∠АВЕ смежный с ∠АВС => ∠АВС = 180° - 76° = 104°
Вертикальные углы равны.
∠DCF = ∠ACB = 104˚
Так как ∠АСВ = ∠АВС = 104° => △АВС - равнобедренный.
=> АВ = АС = 12 см, по свойству равнобедренного треугольника.
ответ: 12 см.
Обозначим за "b" сторону основания.
b/2 = p*cos a, b = 2 p*cos a
Площадь основания So = b^2 = 4p^2cos^2(a).
Боковая грань - равнобедренный треугольник, его площадь - 1/2 * b * V(p^2 - b^2 / 4).
Площадь боковой поверхности пирамиды.состоит из 4 таких треугольников -
Sб = 4 * (1/2 * b * V(p^2 - b^2/4)) = 4p*cos a* V(p^2 - 4p^2 * cos^2 a / 4) =
= 4p * cos a * V(p^2 - p^2 *cos^2 a) = 4p * cos a *p*V(1 - cos^2 a) = 2p^2 * cos a * sin a =[
= 2p^2 * sin(2a).
Полная площадь S = So + Sб = 4p^2cos^2(a). + 2p^2 * sin(2a) = 2p^2 *(2cos^2(a) + sin(2a)).