О- точка пересечения серединных перпендикуляров ( ОМ, ОN и АО)
следовательно, точка пересечения серединных перпендикуляров делит треугольник на шесть равных треугольников
следовательно, треугольник АВС - равносторонний
найдем угол МОА
ОН - является высотой для стороны ВС и делит угол ВОС пополам
следовательно, угол ВОН равен 30 градусов
рассмотрим прямую НА = 180 градусов
следовательно, угол ВОА равен 150 градусов
следовательно, угол МОА равен 150-90=60 градусов ( т.к. угол ОМА = 90)
следовательно, найдем угол МАО = 180-(90+60)=30
рассмотрим треугольник МАО
сторона лежащия на против угла в 30 градусов , равна половине гипотенузы , следовательно сторона МО = 12
по теореме Пифагора найдем сторону АО = 21
рассмотрим треугольник АВН
ВН=12
АН=42
АВ^2 = корень из 42^2+12^2
АВ = 40
АВ=ВС=40
ВС=40
Возможно кто-то напишет простое решение ( возможно это не совсем правильно)
Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения.
1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О.
2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника.
3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α;
4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1.
5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника.
Это всё.