М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Valeria13092004
Valeria13092004
10.12.2021 06:42 •  Геометрия

Радіус кола, вписаного в рівнобедрену трапецію, дорівнює 6 см, а різниця основ 10 см. знайдіть площу трапеції.

👇
Ответ:
arsenumerbekov
arsenumerbekov
10.12.2021

ответ: 156 см²

Объяснение:

Висота трапеції співпадає з діаметром вписаного кола.

ВH = 2R = 2 * 6 = 12 см.

AD - BC = 2AH + BC - BC = 2AH ⇔   2AH = 10   ⇔  AH = 5 см

З трикутника AHB: за т. Піфагора: AB = √(AH²+BH²) = 13 см

Коло можна вписати в трапецію, якщо сума протилежних сторін рівні

AB + CD = BC + AD

13 + 13 = BC + AD

26 = BC + AD  |:2

13 = (BC + AD)/2

S_{ABCD}=\dfrac{BC+AD}{2}\cdot BH=13\cdot12=156 см²


Радіус кола, вписаного в рівнобедрену трапецію, дорівнює 6 см, а різниця основ 10 см. знайдіть площу
4,7(37 оценок)
Открыть все ответы
Ответ:
annshik
annshik
10.12.2021
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник.  
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1  
2)  
Если требуется найти синус угла между отрезками, то выразив 
KL=√(BD^2+AC^2)/2  KO=√(BD^2+AC^2)/4   
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то 
 (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
 откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит 
 sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2)) 
4,6(49 оценок)
Ответ:
alyaardasenova
alyaardasenova
10.12.2021
ABCD-четырехугольник , положим что K,M,L,N - это середины сторон AD,AB,BC,CD соответственно, тогда KM средняя линия треугольника ADB, ML средняя линия треугольника AC так же и с остальными. По условию MN=KL , а так как средние лишний равны половине стороне которой параллельны, стало быть четырёхугольник KLMN - прямоугольник.  
1)
Если требуется найти синус угла между диагоналями четырехугольника, то так как средние линии взаимно перпендикулярны и параллельны диагоналям, то угол между ними равен 90 гр , откуда sin90=1  
2)  
Если требуется найти синус угла между отрезками, то выразив 
KL=√(BD^2+AC^2)/2  KO=√(BD^2+AC^2)/4   
Из теоремы синусов, в треугольнике KON, если x угол между отрезками, то 
 (AC)/sinx =√(BD^2+AC^2)/(2cos(x/2))
 откуда sin(x/2)=(AC^2/(2*√(BD^2+AC^2)))=y тогда cos(x/2)=√(1-y^2) значит 
 sin(x)=2*√(y^2-y^4) = AC^2*√(4AC^2+4BD^2-AC^4)/(2*(AC^2+BD^2)) 
4,8(15 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ