33,88
Объяснение:
1) По формуле Герона находим площадь треугольника:
S = √(p · (p-a)·(p-b)·(p-c)),
где p - полупериметр треугольника:
р = P/2 = (17+65+80)/2 = 162:2=81
S = √(81 · (81-17)·(81-65)·(81-80)) = √(81 · 64 · 16 · 1) = √82944 = 288.
2) S = (17·h₁)2 = (65· h₂)/2 = (80· h₃)/2,
где h₁, h₂ и h₃ - высоты, проведённые к соответствующим сторонам треугольника;
следовательно,
2S = 17·h₁ = 65· h₂ = 80· h₃.
Очевидно, что наибольшая высота проведена к наименьшей стороне:
2· 288 = 17·h₁,
откуда h₁ = 576 : 17 ≈ 33,88.
ответ: 33,88.
30,40,110 градусов
Пусть А и С Основания перпендикуляров опущенных из точки М на стороны данного угла с вершиной О,Точка В Основание перепендикуляра опущенного из точки М на луч,проходящий между сторонами угла АОС причём АОВ = 30градус и СОВ =40градус.Из точек А В С отрезок ОМ виден под прямым углом значит эти точки лежат на окружности с диаметром ОМ Вписанные в эту окружность углы АСВ и АОВ опираются на одну и ту же дугу поэтому АСВ = АОВ = 30градус.Анологично ВАС=СОВ =40градус Следовательно АВС = 180градус - 30градус - 40=110