а) Из условия имеем, что точка пересечения высот лежит на FD. Это может быть только если тр-к DFE - прямоугольный, угол F = 90 гр.
Найдем катет FD:
FD = кор(17^2 - 8^2) = 15
Площадь: S = 8*15/2 = 60
б) Из условия имеем, что DK - и биссектриса и медиана. Значит DEF - равнобедренный. DF = DE = 17, EF = 8
Полупериметр: р = (8+17+17)/2 = 21
Площадь:
S = кор(21*13*4*4) = 4кор273 (примерно 66)
в) Из условия имеем, что биссектриса DK является еще и срединным перпендикуляром. Значит треугольник DEF - равнобедренный. DE= DF=17
Далее решение аналогично п.2.
ответ: 4кор273 = 66 (примерно).
P.S. В 1) и 2) мы воспользовались тем, что прямая и точка, не прин. этой прямой - задают плоскость и притом только одну. Если же говорят о 2 и более плоскостях, значит точка лежит на этой прямой. В 3) мы воспользовались утверждением, что прямая может пересечь плоскость только в одной точке.
АВ - касательная;
АС -секущая;
СD - внутренний отрезок секущей (рисунок в приложении).
По условиям задачи:
АВ+АС=30 см
AB-CD=2
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:
АВ²=АС*DA
Выразим:
AC=30-AB
CD=AB-2
Пусть АВ=х см, тогда
АС=30-х
СD=x-2
АС=DA-DC=30-x-x+2=32-2x
АВ²=АС*DA=(30-x)*(32-2x)
x²=(30-x)*(32-2x)
x²=960-32х-60х+2х²
2х²-х²-92х+960=0
х²-92х+960=0
D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68)
x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи
x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12
АВ=12 см
АС=30-АВ=30-12=18 см
ответ: касательная равна 12 см, секущая - 18 см.