Для выпуклого многоугольника есть формула суммы его углов:
S=(180n - 360) или S=180°(n-2). (1)
В нашем случае сумма четырех углов данного многоугольника равна 4*120°=480°, следовательно, S > 480, так как условие подразумевает наличие хотя бы одного острого угла.
У выпуклого многоугольника каждый угол должен быть меньше 180°.
Тогда из формулы (1):
(180n-360 -480)/(n-4) < 180. Решаем это неравенство при условии, что
n - целое положительное число (количество сторон многоугольника) и
n > 4 (на 0 делить нельзя).
Вычтем из обеих частей неравенства 180:
(180n-360 -480)/(n-4) -180< 0. Или
(180n-840 - 180n +720)/(n-4)<0 => -120/(n-4) < 0
Итак, неравенство спроведлмво при любом n > 4, а так как n - целое число, то
ответ: число сторон может быть ЛЮБЫМ, равным или большим 5.
Проверим:
при n=4 сумма S = 180(4-2) = 360, что не соответствует условию.
При n = 5 имеем: S=180*3 = 540° и таким образом, остается острый угол, равный 540°-480°=60°.
При n = 6 сумма углов будет S = 180*4=720° и на два оставшихся угла остается 720°-480° = 240°, что соответствует условию, так как 240:2=120°.
При n = 10 сумма углов будет S = 180*8=1440° и на 6 оставшихся углов остается 1440°-480° = 960°, что соответствует условию, так как 960:6=160°.
При n = 100 сумма углов будет S = 180*98=17640° и на 96 оставшихся углов остается 17640°-480° = 17160°, что соответствует условию, так как 17160:96=178,75°.
Значит, РС+AD=2·15
РС+25=30
РС=5
ВС=ВР+РС
25=ВР+5
ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D
(5√46)²=25²+20²-2·25·20·cos ∠D
1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны
∠В=∠D
Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900
AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80