1) АВ⊥ВС (как соседние стороны квадрата - основания куба). В1В⊥АВ (как соседние стороны квадрата - боковой грани куба). По теореме о трех перпендикулярах АВ1⊥AD, так как В1А - наклонная, а АВ - проекция этой наклонной на плоскость АВСD, перпендикулярная AD. По той же теореме и АВ1⊥D1C1, так как АВ1 - наклонная, а ВВ1 - проекция этой наклонной на плоскость ВВ1С1C, перпендикулярная В1С1. Что и требовалось доказать.
2) Диагонали ромба взаимно перпендикулярны. АС⊥BD. FC⊥AC, так как FC перпендикулярна плоскости АВСD (дано). Проведем В1D1 параллельно BD. Тогда АС⊥B1D1, а AF⊥B1D1 по теореме о трех перпендикулярах, так как АС - проекция наклонной AF на плоскость АВСD, а АС⊥B1D1, а значит и BD. Что и требовалось доказать.
Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
В1В⊥АВ (как соседние стороны квадрата - боковой грани куба).
По теореме о трех перпендикулярах АВ1⊥AD, так как В1А - наклонная, а АВ - проекция этой наклонной на плоскость АВСD, перпендикулярная AD.
По той же теореме и АВ1⊥D1C1, так как АВ1 - наклонная, а ВВ1 - проекция этой наклонной на плоскость ВВ1С1C, перпендикулярная В1С1.
Что и требовалось доказать.
2) Диагонали ромба взаимно перпендикулярны. АС⊥BD.
FC⊥AC, так как FC перпендикулярна плоскости АВСD (дано).
Проведем В1D1 параллельно BD. Тогда АС⊥B1D1, а AF⊥B1D1 по теореме о трех перпендикулярах, так как АС - проекция наклонной AF на плоскость АВСD, а АС⊥B1D1, а значит и BD.
Что и требовалось доказать.