∠1 = 135°,
∠2 = 45°,
∠3 = 145°,
∠4 = 35°,
∠5 = 145°,
∠8 = 45°.
Объяснение:
1) Пронумеруем углы, начиная слева снизу, идём вверх, потом, а затем справа сверху идём вниз:
∠1 - найти,
∠2 - найти,
∠3 - найти,
∠4 - найти,
∠5 - найти,
∠6 = 35° - дано;
∠7 = 135° - дано;
∠8 - найти.
2) Решение:
∠1 = ∠7 = 135° - как углы вертикальные;
∠2= ∠8 = 180°(развернутый угол) - 135° = 45° - как углы вертикальные;
∠4 = ∠6 = 35° - как углы вертикальные;
∠3= ∠5 = 180°(развернутый угол) - 35° = 145° - как углы вертикальные.
∠1 = 135°,
∠2 = 45°,
∠3 = 145°,
∠4 = 35°,
∠5 = 145°,
∠8 = 45°.
высота АН⊥ВС явл. медианой ⇒ ВН=СН=3
По теореме о трёх перпендикулярах ДН⊥ВС ⇒
расстояние от точки Д до ВС = ДН.
ΔАВН: АН=√(25-9)=4
ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД
АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора)
АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2
по теореме о трёх перпенд. НО⊥АС ⇒
искомое расстояние от т. Н до т. О (до АС)= НО.
ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2
Середина АВ - точка Е, АЕ=ВЕ=2.
Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17