47 Ha сторонах прямого угла С взяты точ- ки А и В. Из точки С опущен перпен- дикуляр CD на прямую АВ. Докажите равенство углов ACD и ABC. А Закончите рисунок. С В
Основания трапеции делятся точкой касания на два отрезка, один из которых равен радиусу, т.е. 3. Обозначим эти отрезки как а и b, где а принадлежит большему основанию. Тогда a-b=8. По свойству прямоугольной трапеции, в которою вписана окружность, произведение отрезков, на которые делит точка касания, боковую сторону равно радиусу в квадрате. Т.к. эти отрезки равны а и b, по свойствам касательных, проведенных к окружности из одной точки, мы можем записать a*b=9. Имеем систему уравнений. {a-b=8 a*b=9 Находим a и b. а=9, b=1. Далее находим основания: 3+9=12, 3+1=4, и боковые стороны 3+3=6, 9+1=10. Суммируем и получаем периметр.
R = 3\sqrt{2}3
2
м
S = 36 м2
Объяснение:
R - радиус описанной вокруг квадрата окружности. По свойству радиуса описанной около квадрата окружности, радиус равен половине диагонали квадрата.
Рассмотрим ΔHEF: < HEF = 90^{0}90
0
, HE = 6 м = EF. По теореме Пифагора найдем гипотенузу HF:
\begin{gathered}HF^{2} = HE^{2} + EF^{2} = 6^{2} + 6^{2} = 36 + 36 = 72\\HF = \sqrt{72} = \sqrt{2*36} = 6\sqrt{2}\end{gathered}
HF
2
=HE
2
+EF
2
=6
2
+6
2
=36+36=72
HF=
72
=
2∗36
=6
2
HF также является диагональю квадрата, тогда R = HF : 2 = 6\sqrt{2} : 2 = 3\sqrt{2}6
2
:2=3
2
Площадь квадрата равна квадрату его стороны, то есть нужно возвести сторону квадрата во вторую степень:
S_{HEFG} = 6^{2} = 36.S
HEFG
=6
2
=36.