М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ihop
Ihop
07.10.2022 23:49 •  Геометрия

Авс-равнобедренный с основанием вс=12см и периметр=32 см,в него вписана окружность к,л,н-точки касания.найти-а)вк ам,б)радиус вписанной окружности

👇
Ответ:

Назовем наш треугольник ABC, тогда основание обозначим за AC, а равные стороны будут AB и BC.

Обозначим AB и BC за х, так как они равны, следовательно они равно по 10 см, т.к P=AC+AB+BC=AC+2x; P-AC=2x; 2x=20; x=10;

Радиус вписанной окружности равен отношению площади треугольника к его периметру (r=S/P).

Проведем высоту AD  к основанию AC и найдем его по теореме Пифагора:

AD=корень из (BC^2-DC^2)=8 см.

Найдем площадь треугольник АВС:

S=AD*AC/2=48 см^2.

Найдем радиус описанной окружности:

r=S/P=48/32=1.5см

4,5(86 оценок)
Ответ:

Назовем наш треугольник ABC, тогда основание обозначим за AC, а равные стороны будут AB и BC.

Обозначим AB и BC за х, так как они равны, следовательно они равно по 10 см, т.к P=AC+AB+BC=AC+2x; P-AC=2x; 2x=20; x=10;

Радиус вписанной окружности равен отношению площади треугольника к его периметру (r=S/P).

Проведем высоту AD к основанию AC и найдем его по теореме Пифагора:

AD=корень из (BC^2-DC^2)=8 см.

Найдем площадь треугольник АВС:

S=AD*AC/2=48 см^2.

Найдем радиус описанной окружности:

r=S/P=48/32=1.5см.

Это правильно.Вродьбы.:) 

4,4(29 оценок)
Открыть все ответы
Ответ:
natalinatark
natalinatark
07.10.2022
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании, 
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, 
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
4,4(25 оценок)
Ответ:
диана27th
диана27th
07.10.2022

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

4,6(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ