1) Cумма углов треугольника = 180, если треугольник прямоугольный , значит один из углов = 90 градусов. следовательно сумма двух острых углов =90
пусть один из острых углов будет Х, тогда другой угол будет 17Х
Х+17Х=90
18Х=90
Х=5-один из острых углов
17Х=85- другой острый угол
2) угол С = 180-(уголА+уголB)
Угол С= 180-(17+23)=140
Высота СН разбивает треугольник на 2 прямоугольных треугольника АСН и СНВ,
угол АСН=180-(90+17)=73
угол ВСН=180-(90+23)=67
угол АСН - угол ВСН = 73-67=6 градусов.
ответ:
объяснение:
1. рассмотрим параллелограмм авсд.
s=ah, а= 6 это следует h=4
2.рассмотрим δ аве, в=5, h=4. тогда по теореме пифагора
хво2степени =5 в степени2 - 4 в степени2 =9
х=3, т.е. ае=дк=3, это следует
3. ед=ад-ае=3
4. рассмотрим δвед, по теореме пифагора следует
хво 2 степени=3во 2степени+4во второй степени=25
×=5,т.е. вд=5
5.проведем дополнительную высоту ск с вершины с и соединяем с основанием ад
6. рассмотрим δ аск, ак=9, ск=4⇒ по теореме пифагора
хво 2степени=9во2степени+4 во 2степени=97
×=√97, т.е. ас=√97
Даны вершины пирамиды А(3,-5,5), В(-5,1,0), С(3,0,5), D(1,-1,4).
1) Находим векторы ВА и ВС.
ВА = (3+5=8; -5-1=-6; 5-0=5) = (8; -6; 5).
Модуль равен √(64+36+25) = √125 = 5√5.
ВС = (3+5=8;0-1=-1; 5-0=5) = (8; -1; 5).
Модуль равен √(64+1+25) = √90 = 3√10.
cos B = (8*8+(-1)*(-6)+5*5)/(5√5*3√10) = 95/(75√2) = 19√2/30 ≈ 0,896.
∠B = arc cos 0,896 = 0,46086 радиан = 26,406 градуса.
2) Площадь треугольника ABС равна половине модуля векторного произведения ВА(8; -6; 5) на ВС(8; -1; 5).
Применим треугольную схему.
i j k | i j
8 -6 5 | 8 -6
8 -1 5 | 8 -1 =
= -30i + 40j - 8k - 40j + 5i + 48k = -25i + 0j + 40k = (-25; 0; 40).
Модуль равен √(625 + 0 + 1600) = √2225 = 5√89.
Площадь АВС равна (1/2)*5√89 = 5√89/2 ≈ 23,585 кв.ед.
3) Объём пирамиды равен (1/6) смешанного произведения (ВАхВС)*BD.
Находим вектор BD: В(-5,1,0), D(1,-1,4) = (1+5=6; -1-1=-2; 4-0=4) = (6; -2; 4).
BAxBC = (-25; 0; 40)
V = (1/6)*(-150+0+160) = 10/6 = 5/3 ≈ 1,67 куб.ед.
Х=5
ответ 5х17=85